
January 2001

NASA/TP2001–210195

A Spectral Algorithm for Solving
the Relativistic Vlasov-Maxwell Equations

John V. Shebalin
Lyndon B. Johnson Space Center
Houston, Texas  77058-3696



THE NASA STI PROGRAM OFFICE . . . IN PROFILE

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information.
The NASA STI Program Office provides access
to the NASA STI Database, the largest
collection of aeronautical and space science STI
in the  world. The Program Office is also
NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data
and information deemed to be of continuing
reference value. NASA’s counterpart of
peer-reviewed formal professional papers
but has less stringent limitations on
manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary
or of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and mission,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign

scientific and technical material pertinent to
NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access Help
Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934



January 2001

NASA/TP2001–210195

A Spectral Algorithm for Solving
the Relativistic Vlasov-Maxwell Equations

John V. Shebalin
Lyndon B. Johnson Space Center
Houston, Texas  77058-3696

National Aeronautics and
Space Administration

Johnson Space Center
Houston, Texas 77058



Available from:

NASA Center for AeroSpace Information National Technical Information Service
800 Elkridge Landing Road 5285 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22161

This report is also available in electronic form at http://techreports.larc.nasa.gov/cgi-bin/NTRS



iii

CONTENTS

Page

1. The Relativistic Vlasov-Maxwell Equations..................................................................... 1

2. Nondimensional Form of the Equations............................................................................ 2

3. Formulation in Velocity Space.......................................................................................... 4

4. Spectral Method Formulation............................................................................................ 6

5. Spectral Form of the Vlasov Equation .............................................................................. 9

6. Determination of the Electromagnetic Field ..................................................................... 12

7. The Complete Spectral Algorithm .................................................................................... 14

8. Discussion ......................................................................................................................... 15

9. Conclusion......................................................................................................................... 16

References ............................................................................................................................. 17



iv

ABSTRACT

A spectral method algorithm is developed for the numerical solution of the full six-dimensional

Vlasov-Maxwell system of equations.  Here, the focus is on the electron distribution function,

with positive ions providing a constant background.  The algorithm consists of a Jacobi

polynomial-spherical harmonic formulation in velocity space and a trigonometric formulation in

position space.  A transform procedure is used to evaluate nonlinear terms.  The algorithm is

suitable for performing moderate resolution simulations on currently available supercomputers

for both scientific and engineering applications.
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1. The Relativistic Vlasov-Maxwell Equations

The dynamics of a high-energy, collisionless plasma are described by the relativistic Vlasov-

Maxwell equations [1].  These nonlinear equations include special relativistic effects [2] and

couple the equations of the electromagnetic field (Maxwell’s equations) with the evolution

equations for single-particle distribution functions (Vlasov equations).  In the simplest case, a

plasma has two species, protons and electrons.  Protons have charge e>0, mass mp, and

distribution function fp, while electrons have charge -e<0, mass: me, and distribution function fe.

Although non-relativistic Vlasov-Poisson and Vlasov-Maxwell systems have received much

attention in the distant [3-15] and more recent [16-23] past, relativistic systems appear to be

somewhat less explored, although there have been linear treatments [24-27].  Here, an algorithm

for a spectral method numerical solution of a fully relativistic, nonlinear Vlasov-Maxwell system

is developed.  The goal is to set up the basic framework necessary for numerical simulation in

the full six-dimensional case.  The purpose of this work is to provide a means to enable the

studyand ultimately the predictionof high-energy charged-particle distributions in space,

both for intrinsic scientific interest and for optimizing human and robotic space exploration.

The Vlasov equations for the distribution functions fp(x,p,t) and fe(x,p,t) are

(1.1) 0=
∂

∂
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To determine the self-consistent fields E and B, the Maxwell equations are needed:

(1.3) 0=⋅∇ B

(1.4) ρπ4=⋅∇ E

(1.5) E
B ×−∇=

∂
∂

tc

1

(1.6) jB
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π41 −×∇=
∂
∂

.
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The sources present in (1.4) and (1.6) are the charge density ρ and the current density j:

(1.7) ( ) pdffe epep ∫ −=ρ+ρ=ρ

(1.8) ( ) pvjjj dffe epep ∫ −=+= .

Additionally, E and B can have external components, as well as self-consistent ones, which can

serve as external drivers of the coupled Vlasov-Maxwell system.

The solution of this set of integro-differential equations presents a great challenge, because of

both the nonlinearity of the couplings and the six-dimensional nature of the solution space of the

distribution function.  Except in special cases, nonlinearity requires the use of computer

simulation, while the presence of six dimensions has, in the past, pushed such simulations

beyond the capabilities of then-available computer systems.  However, we have now begun to

move into an era of fast computers with large core memories, and these machines are providing

the resources necessary to perform simulations of six-dimensional continua with a moderate

amount of resolution.  It is in this context that the following algorithm is presented and we hope

that this will help further the development of computer simulations of the Vlasov-Maxwell

system and will lead to a greater understanding of the evolution and distribution of high-energy

charged particles in space (and other) plasmas.

2. Nondimensional Form of the Equations

First, let us nondimensionalize the equations of the previous section.  To do this, we denote a

characteristic length by L, and define

(2.1) ∇=∇′=′=′=′=′ L
cmcLL

ct
t ,,,,

p
p

v
v

x
x .

In the previous section, Maxwell’s equations were written in Gaussian form, in which the electric

field E and magnetic induction B have the same units.  To nondimensionalize Maxwell’s

equations, we choose Bo as a characteristic electromagnetic field strength and no as a

characteristic number density, so that the fields and sources are transformed into

(2.2)
cencenenenBB

epep

oooooo
,,,,,

j
j

j
j

B
B

E
E ==

ρ
=ρ

ρ
=ρ=′=′ −+−+ .
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Here, the dimensional and dimensionless quantities are functions of (x,p,t) and ),,( t ′′′ px ,

respectively. Also, using (1.4) and (1.6), a natural choice for Bo is Bo = eLno, so we will adopt

this definition. The nondimensional Maxwell’s equations are

(2.3) 0=′⋅∇′ B

(2.4) ( )
−

ρ+ρπ=′⋅∇′ +4E

(2.5) E
B ′×∇′−=

′∂
′∂

t

(2.6) ( )−+ +π−′×∇′=
′∂
′∂

jjB
E

4
t

.

The distribution functions, in turn, take the form:

(2.7) ),,(
)(

),,(),,,(
)(

),,(
o

3

o

3
tf
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mc
tftf

n

mc
tf ep pxpxpxpx =′′′=′′′ −+ .

The nondimensional Vlasov equation is

(2.8) ( ) 0=
′∂

∂
⋅′×′+′β±

′∂
∂

⋅′+
′∂

∂ ±
±

±±
p

BvE
x

v
ff

t

f
.

The constants β± can be given in terms of L, no, and the classical radius of the electron re:

(2.9)
2

2
2

o ,,
cm

e
r

m

m
Lrn

e
e

p

e
e =β=β=β −+− .

Unless a different characteristic length L is defined for protons and electrons, the relations in

(2.9) indicate that the dynamic coupling of the electromagnetic field to the proton distribution

function f+ is less than that of the field to the electron distribution function f- by a factor of mp/me

= 1830.  Assuming that there is only one overall characteristic length L, then the dynamic

evolution of f- can be thought of as occurring on a static proton background, whose sole purpose

is to provide overall charge neutrality, at least for times which are short compared to those

required for an appreciable evolution of f+.  Here, it is the electron distribution function evolution

that will be of primary concern and, to this end, we will simplify notation by choosing β- = 1 and

redefining f- = f.  Furthermore, we will henceforth drop all primes and accept that all variables
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occurring in all equations are dimensionless.  The nondimensional equations we will be

concerned with are the following:

(2.10) ( ) 0=
∂
∂⋅×+−

∂
∂⋅+

∂
∂

p
BvE

x
v

ff

t

f

(2.11) 0=⋅∇ B

(2.12) ρπ=⋅∇ 4E

(2.13) E
B ×−∇=

∂
∂

t

(2.14) jB
E π−×∇=

∂
∂

4
t

(2.15) pdf∫−=ρ 1

(2.16) pvj df∫−= .

3. Formulation in Velocity Space

The distribution function depends on p rather than v because the six-dimensional phase space

volume element dxdp = dxdydzdpxdpydpz and the distribution function f(x,p) are invariant [2]

under Lorentz transformations, while dxdv and f(x,v) are not.  However, limits on the velocity

components are 11 ≤≤− kv , while the limits on momentum are ∞<<∞− kp .  For

computational purposes, we will work in velocity space, since the associated finite domain is

more commensurate with the finite numerical structure of a digital computer.

The dimensionless relation between momentum and velocity is

(3.1)
21 v−

= v
p .

To transform from a momentum space formulation to one in velocity space, we need to calculate

the Jacobian of the transformation, and to apply the chain rule of differential calculus to the

equations of the previous section.  These activities require the following partial derivatives,

which can be derived from (3.1):
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(3.2)
( )[ ]
( ) 2
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2

2

1

1
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vvv
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i

−

+−δ
=
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(3.3) ( )( ) 2
1

21 vvv
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v
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i −−δ=
∂
∂

.

Here, d is the dimension of the velocity space, and repeated indices, when used, will denote an

implicit summation from 1 to d:

(3.4) ∑≡=
=

d

i
iii vvvv

1

22 .

The Jacobian for transforming the integrals in (2.15) and (2.16) is

(3.5) ( ) 12 21det
−−

−=
∂
∂ d

v
v

p

k

i .

Let us also transform the Vlasov equation (2.10) by using (3.2), along with

(3.6) g(x,v) = f(x,p).

Then, equation (2.10) becomes

(3.7) ( ) ( )( ) 01 2
1

2 =
∂
∂−−δ×+−

∂
∂⋅+

∂
∂

k
kiiki v

g
vvv

g

t

g
BuE

x
v .

(Again, repeated indices denote summation.)

Since no massive particles have a speed of c or greater, we must have g = 0 for v2 ������7KH

distribution function g can be written as

(3.8)
( )







>

>≤−=
1,0

0,1),,(1
),(

2

22

v

nvGv
g

n
vxvx .

We will assume that G can be represented by an analytic function in the vk over the domain

12 ≤v .  Also, using n > 1 in (3.8) will ensure that not only the distribution function, but also its

first derivative, will be zero at v2 = 1.
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Using (3.5) and (3.8), the density integral (2.15) becomes

(3.9) ( ) ( )∫ −−−=∫−=ρ
−

−−∞

∞−

1

1

212 1111 2 vp dvHGvdf
dn

.

Here, H(z) is the step function, which is equal to unity if z �����DQG�HTXDO�WR�]HUR�RWKHUZLVH���7KH

current integral (2.16) similarly becomes

(3.10) ( ) ( )∫ −−−=∫−=
−

−−∞

∞−

1

1

212 11 2 vvpvj dvHGvdf
dn

Using (3.9), equation (3.8) becomes

(3.11) ( ) ( ) ( ) 021 2
1

2 =







−

∂
∂−δ−×+−

∂
∂⋅+

∂
∂

Gvn
v

G
vvv

G

t

G
i

k
kiikiBuE

x
v .

The choice of n in (3.9), (3.10) and (3.11) is determined so as to simplify the algorithm.

4. Spectral Method Formulation

Since we wish to consider a fully three-dimensional velocity space, we will set d = 3.  When this

three-dimensional velocity space (“v-space”) is coupled with a three-dimensional position space,

the result is the full six-dimensional phase space of the single particle distribution function.  In a

three-dimensional relativistic velocity space, the domain is the interior of the sphere v2 = 1, so

that a spherical polar coordinate system in velocity space is appropriate:

(4.1) ( )[ ]zyxv ˆcosˆsinˆcossin +ϕ+ϕ= v

Here, x̂ , ŷ  and ẑ  are orthonormal Cartesian unit vectors.  In the velocity-space spherical

coordinate system (v�� �� ���HTXDWLRQ��������WDNHV�WKH�IRUP�

(4.2) ( ) ( ) ( ) 0121 22 2
1

=
















−+

∂
∂⋅−

∂
∂⋅×+−−

∂
∂⋅+

∂
∂

Gvn
v

G
v

G
v

G

t

G
vE

v
BvE

x
v .

The density integral (3.10) and corresponding current integral become (here, the element of solid

angle is dΩ� �VLQ d d �

(4.3) ( ) ( )∫ Ω−−=∫ −−=ρ
−−−−

ddvGvvdGv
nn 12212 2

3
2
3

1111 v
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(4.4) ( ) ( ) Ω∫ −−=∫ −−=
−−−−

ddvGvvdGv
nn 12212 2

3
2
3

11 vvvj .

Our ultimate goal is to simulate numerically the evolution of the distribution function.  To this

end, a spectral method algorithm will be developed in which dependent variables are expanded

in terms of known functions.  Since the domain in v-space is a three-dimensional sphere, an

appropriate choice of expansion functions for the angular dependence of the G is the well-known

spherical harmonics Ynm� � ��>��@��WKH�Pn
m are the associated Legendre functions):

(4.5) ϕθ
+
−

π
+−≡ϕθ imm

n
m

nm eP
mn

mnn
Y )(cos

)!(

)!(

4

12
)1(),( .

A choice of radial expansion functions is complicated by the relativistic factor (1-v2)n-3/2-1 in the

integrands of (4.3) and (4.4).  This difficulty is eliminated by choosing n = 5/2, which removes

the relativistic factor from (4.3) and (4.4), although not from (4.2).  [If n = 2 is chosen, the

integrands in (4.3) and (4.4) appear to gain a weight function appropriate to Chebyshev

polynomials.  However, the domain of v is 0 ��v �����ZKLOH�WKH�&KHE\VKHY�SRO\QRPLDOV�Tn(z) are

orthogonal over the interval -1 ��z �����DQG�D�WUDQVIRUPDWLRQ�z = 2v-1 produces a weight function

no longer in accord with the orthogonality properties of the Tn(z).]

Using n = 5/2 reduces (4.3) and (4.4) to simpler forms:

(4.6) θ∫ ϕ∫θ∫−=ρ
π

=θ

π

=ϕ=
sin1 2

0

2

0

1

0
vGdddv

v

(4.7) θ∫ ϕ∫θ∫−=
π

=θ

π

=ϕ=
sin2

0

2

0

1

0
vGdddv

v
vj .

The choice of radial expansion function is now straightforward. We will use a set of polynomials

that are orthogonal over the interval 0 ��v �����ZLWK�D�ZHLJKWLQJ�IXQFWLRQ�RI�v2.  These are the

shifted Jacobi polynomials of index (0,2): Pn
0,2(2v-1), which are described in detail elsewhere

[29].  Here, the necessary results are
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(4.8)

( ) )()()(
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=

M

(4.9) mnnmn sdsPsPs δ=∫ +
+− 32

82,0
1

1

2,02 )()()1(

(4.10)











++

+
+

+
=′ −

++
++

+ )()1(
32

)(
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)( 2,0

2,0
1

2,0

)3)(1(
)2)(32(2,0

1 sPn
n

snP

n

sP
sP n

nn
nn
nn

n .

The symbol dsdPP nn /≡′  denotes the first derivative of the nth order polynomial Pn(s).

Using (4.9), let us define the normalized polynomial Rn(v):

(4.11)

.)()()b

)12(32)()a

1

0

2

2,0

mnmn

nn

vdvRvRv

vPnvR

δ=∫

−+≡

The distribution function G then has the expansion:

(4.12) ∑ ∑ ∑ ϕθγ=ϕθ
∞

=

∞

= −=0 0
),()(),,(

k n

n

nm
nmkknm YvRvG .

Here, it should be noted that the γknm = γknm(x,t) are functions of position x and time t.

The coefficients γknm can be determined by the inverse operation 
knm

L :

(4.13) ∫ Ωϕθϕθ≡=γ ddvvYvRvGG
mnkknmknm

2* ),()(),,( .

If (4.12) is placed into (4.6) and (4.13) is used, the result is

(4.14) 0001 γ−=ρ .
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To evaluate (4.7), (4.1) can be written as

(4.15) ( )o
*

10
*

1,1
*

11 ˆˆˆ
3

4
eeev YYYv ++π= −−+ .

Here, the complex unit vectors are

(4.16) ze
yx

e
yx

e ˆˆ,
2

ˆˆ
ˆ,

2

ˆˆ
ˆ o =−=+−= −+

ii
.

Similarly, using (4.1), (4.12) and (4.13), allows the integral (4.7) to be determined:

(4.17) o010110011111 ˆ
15

1

2
ˆ

15

1
Re eej 



 γ+γπ−












 γ+γπ= +

It is clear that the choice of expansion functions leads to an easy evaluation of the charge density

and current, once the expansion functions of the distribution function are known.  When ρ and j

are determined, Maxwell’s equations (2.11) to (2.14) can be used to find E and B.  These, in

turn, affect the evolution of the γknm through (4.1).  The spectral form of the evolution equations

will be described next.

5. Spectral Form of the Vlasov Equation

The Vlasov equation (4.2) is, in a three-dimensional velocity space spherical polar coordinate

system,

(5.1) ( ) ( ) 0ˆ151ˆ 2
1

2
3

22 =




 ×⋅−⋅−−





−

∂
∂−⋅−

∂
∂⋅+

∂
∂

GG
v

vvG
v

G
v

G

t

G
DvB

D
EvE

x
v .

Here D is the angular derivative part of the velocity space gradient operator:

(5.2)
ϕ∂

∂
θ

+
θ∂

∂≡+
∂
∂≡

∂
∂

sin

ˆˆ,
1

ˆ
ϕθDDv

v vv
.

In the above, ϕθ ˆ,ˆ,v̂  are the unit vectors in the v�� �� �GLUHFWLRQV��UHVSHFWLYHO\�

Now, we subject equation (5.1) to the inverse operation
knm

L  defined in (4.12):

(5.3) [ ] )3()2()1()0(
knmknmknmknm

knm

t
NBNNEN ⋅−+⋅=⋅∇+

∂
γ∂
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where

(5.4)
knmknm GvN =)0(

(5.5) ( )
knm

knm vG
v

G
v 





−

∂
∂−= 51ˆ 2

3
2)1( vN

(5.6) ( )
knm

knm Gvv DN 2
1

21)2( 1−= −

(5.7) ( )
knm

knm Gv DvN ×−= ˆ1 2
1

2)3( .

At this point, we use the properties [28] of the angular momentum operator, L:

(5.8) ( ) o
2

1 ˆˆˆˆ eeeDvL zLLLi +−=×−≡ +−−+ ,

where

(5.9)
ϕ∂

∂−=





ϕ∂

∂θ±
θ∂

∂±= ϕ±
± iLieL z

i ,cot .

We will also need

(5.10) ( )
θ∂

∂θ−+θ=×−≡ +−−+ sinˆˆˆcosˆ o
2

1 eeeLvD LLi

(5.11) ( ) o
2

1 ˆcosˆˆsinˆ eeev θ+−θ= +
ϕ−

−
ϕ ii ee .

The operators v̂ , D, and L act on the spherical harmonics Ynm� � ��WR�SURGXFH�OLQHDU

combinations of other spherical harmonics with possibly raised and/or lowered indices n and/or

m.  The coefficients of these linear expansions can be made more succinct using
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(5.12)

)1)((

)12)(12(
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Using the tabulated properties [28] of the Ynm� � ���DORQJ�ZLWK�WKH�DERYH�GHILQLWLRQV��SURGXFHV�

after a lengthy derivation, the following representations of (5.4), (5.5), (5.6) and (5.7):

(5.13)
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The terms )(
,
α

jkw  above are
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(5.18) ( )∫ −=
1

0

2)2(
,

2
1

1 dvRRvvw kjjk

(5.19) ( )∫ −=
1

0

22)3(
,

2
1

1 dvRRvvw kjjk .

Using (4.8) and (4.11), the integral in (5.16) is relatively simple to evaluate:

(5.20) 

[ ]

)2)(1(

33
,

)32)(52()2(

)3)(1( 2

1,1,1,2
1)0(

,

++
++=

+++
++=

δ+δ+δ= −−+

kk

kk
W

kkk

kk
Q

QWQw

kk

kjkkjkkjkjk

.

The integrals in (5.17), (5.18) and (5.9) are more tedious to evaluate and will be deferred.

We now have a set of partial differential equations (5.3) in position space (x-space) that is

nonlinearly coupled to the Maxwell equations.  The velocity dependent part of the Vlasov

equation has thus been transformed into a set of v-space spectral equations, i.e., equations for the

spectra γknm(x,t).  This v-space spectral formulation is independent of the numerical method that

is used in x-space.  In x-space, we are free to choose whatever geometry, coordinate system and

numerical method seems most appropriate and realizable.  In fully ionized plasma problems,

there are no distinct bounding surfaces since these generally preclude the existence of a fully

ionized state.  We must, of course, make some reasonable assumptions about the behavior of the

plasma at the numerical boundary.  We could assume that the number density falls to zero at

such a boundary, for example, or we could assume that density is periodic at the boundary of the

numerical grid that represents x-space.  This choice then narrows the choices of numerical

method to use in x-space.  Here, for illustrative purposes and because it is applicable to so-called

homogeneous plasmas, we will choose periodic boundary conditions.  This leads to a

straightforward spectral formulation in x-space.  Thus, our next step is to consider solution of the

Maxwell equations in the case of periodic boundary conditions.

6. Determination of the Electromagnetic Field

The full set of Maxwell’s equations, (2.11) to (2.14), can be written in terms of the potential

ϕ and the potential vectors A and C as follows [30]:
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(6.1) C
A =

∂
∂

tc

1

(6.2) jA
C π4

1 2 +∇=
∂
∂

tc

(6.3) C⋅∇−−=∇ ρπϕ 42

(6.4) 0
2

1 =⋅∇+
∂
∂

A
tc

ϕ
.

Equation (6.4) is the Lorentz condition [31].  The relations (6.1-4) are a set of coupled, first-

order-in-time, partial differential equations for the electromagnetic potentials, in a form suitable

for numerical integration.  The associated electric and magnetic fields are

(6.5) AB ×∇=

(6.6) CE −−∇= ϕ .

In the case of periodic boundary conditions, we will expand electromagnetic fields and

potentials, as well as the γknm, when necessary, using fast Fourier transforms:

(6.7) 

∑π=

∑π=

⋅−

⋅−

x

xk

k

xk

xAkA

kAxA

.),()2(),(
~

)b

),(
~

)2(),(a)

i-

i

2
3

2
3

ett

ett

There is no time-frequency expansion here because the coupling between the electromagnetic

field and matter is generally nonlinear, which generally precludes a simple dispersion relation

between wave frequency ω and wave vector k.  In terms of Fourier coefficients (omitting t in the

argument, for brevity), equations (6.1) to (6.6) take the form:

(6.8) )(
~)(

~
1

kC
kA =
td

d

c

(6.9) )(
~

4)(
~)(

~
1 2 kjkA

kC π+−= k
td

d

c
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(6.10) [ ])(
~

i)(~4)(~ 2 kCkkk ⋅+= − ρπϕ k

(6.11) 0)(
~

i
)(~

2
1 =⋅+ kAk

k
td

d

c

ϕ
.

The sources in (6.9) and (6.11) are the Fourier transforms, using (6.7), of (4.14) and (4.17).

(Also, note that the source coefficients corresponding to k = 0 are zero.)

Using (6.7) and (6.10), equations (6.5) and (6.6) become

(6.12) )(
~

i)(
~

kAkkB ×=

(6.13) )(
~

)(~i4)(
~

22
kC

kk
Ik

k
kE ⋅





−−ρπ−=

kk
.

Here, I is the unit dyadic.  Note that )(~ kϕ does not appear in these expression for )(
~

kB and

)(
~

kE .  The scalar potential is thus only an auxiliary function, while )(
~

kA  and )(
~

kC are seen to

be more fundamental in classical electrodynamics.  Furthermore, it is only those parts of )(
~

kA

and )(
~

kC transverse to k that are essential to determining )(
~

kB and )(
~

kE .  (However, in

numerical simulations of quantum electrodynamic processes, )(~ kϕ must also be calculated

[32,33].)

7. The Complete Spectral Algorithm

A spectral method algorithm for the Vlasov-Maxwell system, as developed here, consists of a

part in velocity space and a part in position space.  The basic v-space spectral equation is (5.3)

and its solution produces the coefficients γknm, which are time-dependent functions in x-space.

We use a small subset of these coefficients to directly determine the electromagnetic sources,

through (4.14) and (4.17).  In x-space, Fourier transforms of these sources then allow the time-

evolution of the electric and magnetic fields to be calculated through (6.8), (6.9), (6.12), and

(6.13).  These electromagnetic fields then enter the right-hand side of (5.3), completing the cycle.

This is a coupled set of nonlinear equations, and a complete description of the algorithm

developed here requires only a few additional details.
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Equation (5.3) determines γknm and can be written as

(7.1) knmknm
knm

t
Ψ+Γ=

∂
γ∂

where

(7.2) [ ] )3()2()1()0( , knmknmknmknmknmknm NBNNEN ⋅−+⋅=Ψ⋅−∇=Γ .

To determine the Γknm we use the Fourier transform to k-space (6.20b), to find )0(~
knmN  and then

form

(7.3) )0(~~
knmknm i Nk ⋅−=Γ ,

after which we transform back to x-space with (6.20a) to get Γknm.  Similarly, using (6.20a) to

find E(x) and B(x) from )(
~

kE  and )(
~

kB , allows us to form Ψknm point-wise on the numerical x-

space grid.  The transform method was pioneered many years ago [6] and has proven very useful

in the solution of nonlinear problems involving many modes.

Equation (7.1) is now defined on all x-space grid points and can be used to advance the γknm

forward in time with a suitable time-integration scheme (such as a Runge-Kutta [34] or an

Adams-Bashforth [35] procedure).  Since Γknm consists of only six coefficients γknm, it may be

efficient and more accurate to treat this term implicitly when solving (7.1).  Aliasing (i.e., higher-

order coefficients affecting the determination of lower-order coefficients) can occur in

determining the Ψknm, but this can be eliminated, if desired [36].  However, aliasing is often not

critical, and run time can be reduced by neglecting aliasing effects (such methods are termed

pseudospectral [37]).  Lastly, one can introduce external parts to E and B in (7.2), in addition to

those parts determined by (6.12) and (6.13), and these can serve as a source of external forcing,

if appropriate to a given problem.

8. Discussion

The spectral method algorithm developed here provides a means for solving the coupled,

nonlinear Vlasov-Maxwell system of equations in the full six-dimensional case.  Numerical

implementation requires the use of a discrete grid of points, and if we assume, for the purpose of

illustration, that each dimension is given N points, then there are a total of N6 grid points.  If N =

32, then N6 ≈ 109, and if we assume 8 bytes per word in a computer, along with a factor of 25 to
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50 for all the arrays needed, then core memory requirements are in the range of 1 to 2 terabytes

(1012 bytes), which is currently available on the largest existing supercomputers.  The number of

grid points allotted to each dimension in the six-dimensional x-v-space can also vary, to increase

or decrease resolution, as appropriate.

However, remember that, in a spectral method, grid points are sampling points for an underlying

continuous representation.  The number of grid points is thus essentially equivalent to the

number of coefficients (the ‘spectra’) kept after truncating a formally infinite function expansion.

To prevent a ‘pileup’ at the higher-order coefficients and to ameliorate the effects of

‘filamentation’ [10,12,17], it may prove necessary to investigate the use of a collision term in the

Vlasov equation, as done previously [3,16].  (These possibilities, and others unthought of, remain

as potential challenges for future development.)

In spherical polar coordinates in v-space, the number of points in the radial, or v, direction sets

the energy resolution of the code.  This resolution may be defined by the relativistic factor γn =

(1-vn
2)

-½
 corresponding to the largest positive zero vn of Rn(v) (all the zeros are used in the

Gaussian quadrature formula [38] for integrals involving Rn, in which case the function to be

evaluated is effectively known more or less precisely only at those zeros and interpolated in

between [39]).  Using known results [29], we can estimate γn ≈ 8n/3π.  For n = 32, this gives the

resolution of electron energies an upper bound of around 14 MeV, a value which can be

increased by making n larger (e.g., by decreasing the number of grid points allotted to other

coordinates).  Thus, moderate resolution six-dimensional numerical simulations of relativistic

electron distributions are possible on available computers.

9. Conclusion

The algorithm presented here provides a straightforward procedure with which to begin using

supercomputer resources.  The next steps are to evaluate certain integrals mentioned in this

paper, to begin the numerical implementation of the algorithm, to gain access to the necessary

computers, and to begin running numerical simulations.  The probable outcome of proceeding is

the creation of a numerical tool capable of studying the full six-dimensional dynamic evolution

of charged-particle distributions, starting from various initial conditions and taking into account

the influence of external fields.  The benefits to be gained are a greater understanding of basic

plasma processes and a new capability to predict radiation levels and effects in astrophysical,

spaceflight, and engineering systems.
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